小学论坛

 找回密码
 立即注册
查看: 197|回复: 0

数学家的故事:丢番图猜想

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2018-8-22 22:05:35 | 显示全部楼层 |阅读模式
  公元3世纪前后,亚历山大学派的学者丢番图发现1,33,68,105中任何两数之积再加上256,其和皆为某个有理数的平方。在丢番图的上述发现约1300年后,法国业余数学家费马发现数组:1,3,8,120中任意两数之积再加上1后,其和均为完全平方数。此后,其神秘的面纱才逐步揭开。但问题也许并没有完,人们也许还自然会想到:
       
          1,有上述性质的数组中,数的个数是否能超越四个。
       
          2,有无这样的数组,在两两相乘后加其它数后,还能为完全平方数。对于任给的n个正整数a_1,a_2,…,a_n,总存在一个实数x,使得‖a_ix‖≥1/(n+1),i=1,2,…,n,成立,我们给出如下更一般的猜想:对于任给的n个正数a_1,a_2,…,a_n,总存在n个整数k_1,k_2,…,k_n,使得a_ik_j-a_jk_i≤n/(n+1)a_j-1/(n+1)a_i,对任给的i,j∈{1,2,…,n}成立、并且对更一般的猜想作了一些研究,给出了n=2,3时的证明,其方法较以前完全不同。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-4-18 22:37 , Processed in 0.051625 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表