小学论坛

 找回密码
 立即注册
查看: 123|回复: 0

五年级最佳策略例题讲解

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2017-2-13 17:54:49 | 显示全部楼层 |阅读模式
  五年级最佳策略例题讲解
       
          【最佳策略】
       
          例1A、B二人从A开始,轮流在1、2、3、……、1990这1990个数中划去一个数,直到最后剩下两个数互质,那么B胜,否则A胜。问:谁能必胜?制胜的策略是什么?
       
          讲析:将这1990个数按每两个数分为一组;(1、2),(3、4),(5、6),…,(1989、1990)。
       
          当A任意在括号中划去一个时,B就在同一个括号中划去另一个数。这样B就一定能获胜。
       
          例2桌上放有1992根火柴。甲乙两人轮流从中任取,每次取得根数为1根或2根,规定取得最后一根火柴者胜。问:谁可获胜?
       
          讲析:因为两人轮流各取一次后,可以做到只取3根。谁要抢到第1992根,谁就必须抢到第1989根,进而抢到第1986、1983、1980、…、6、3根。
       
          谁抢到第3根呢?自然是后取的人。即后取的可以获胜。
       
          后者获胜的策略是,当先取的人每取一次火柴梗时,他紧接着取一次,每次取的根数与先取的加起来的和等于3。
       
          例3有分别装球73个和118个的两个箱子,两人轮流在任一箱中任意取球,规定取得最后一球者为胜。问:若要先取者为获胜,应如何取?
       
          讲析:先取者应不断地让后者在取球之前,使两箱的球处于平衡状态,即每次先取者取之后,使两箱球保持相等。这样,先取者一定获胜。
         
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-11 05:08 , Processed in 0.060875 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表