小学论坛

 找回密码
 立即注册
查看: 150|回复: 1

[数的整除问题] 自然数问题(五年级奥数题及答案)

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:52:38 | 显示全部楼层 |阅读模式
  自然数问题
       
          求满足除以5余1,除以7余3,除以8余5的最小的自然数。
         
       
       
          点击下一页查看答案
回复

使用道具 举报

0

主题

1万

帖子

3万

积分

论坛元老

Rank: 8Rank: 8

积分
31806
发表于 2016-8-15 11:54:59 | 显示全部楼层

       
       
          解答:与昨天的题类似,先求出满足"除以5余1"的数,有6,11,16,21,26,31,36,…
       
          在上面的数中,再找满足"除以7余3"的数,可以找到31。同时满足"除以5余1"、"除以7余3"的数,彼此之间相差5×7=35的倍数,有31,66,101,136,171,206,…
       
          在上面的数中,再找满足"除以8余5"的数,可以找到101。因为101<[5,7,8]=280,所以所求的最小自然数是101。
       
          在这两题中,各有三个约束条件,我们先解除两个约束条件,求只满足一个约束条件的数,然后再逐步加上第二个、第三个约束条件,最终求出了满足全部三个约束条件的数。这种先放宽条件,再逐步增加条件的解题方法,叫做逐步约束法。
         
        05 (42.1 KB, 下载次数: 50)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-16 14:17 , Processed in 0.057140 second(s), 10 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表