小学论坛

 找回密码
 立即注册
查看: 75|回复: 0

[数的整除问题] 习题十一(上)解答

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:48:07 | 显示全部楼层 |阅读模式
  1.从6岁到13岁共有8种不同的年龄,根据抽屉原理,任选9名同学就一定保证其中有两位同学的年龄相同。
  2.共有4×5=20(种)不同的买饭菜的方式,看作20个抽屉,21名同学按照买饭菜的方式进入相应的抽屉,根据抽屉原理,至少有两人属于同一抽屉,即他们所买的菜和主食是一样的。
  3.把自然数按照除以5的余数分成5个剩余类,即5个抽屉.任取6个自然数,根据抽屉原理,至少有两个数属于同一剩余类,即这两个数除以5的余数相同,因此它们的差是5的倍数。
  4.持两面彩旗的方式共有以下9种:
  红红、黄黄、绿绿、红黄、黄红、红绿、绿红、黄绿、绿黄.把这9种持旗方式看作9个抽屉,根据抽屉原理可得出,至少要有10个同学,才能保证他们当中至少有两人不但拿小旗的颜色一样而且顺序相同。
  5.将这11个自然数分成下列6组:
  {10,19},{11,18},{12,17},{13,16},{14,15},{20},从中任取7个数,根据抽屉原理,一定有两个数取自同一数组,则这两个数的和是29。
  6.把这20个数分成下列11个组。
  {1,12},{2,13},{3,14},…{9,20},{10},{11}.其中前9组中的两数差为11.任取12个数,其中必有两个数取自同一数组,则它们的差是11.
  7.如果有一个人赛过0次(即他还未与任何人赛过),那么最多的只能赛过18次;如果有人赛过19次(即他已与每个人都赛过了),那么最少的只能赛过1次.无论怎样,都只有19种情况,根据抽屉原理,20名棋手一定有两人赛过的场次相同。
  8.把这200个数分类如下:
  ①1,1×2,1×22,1×23,…,1×27,
  ②3,3×2,3×22,3×23,…,3×26,
  ③5,5×2,5×22,5×23,…,5×25,
  …
  (50)99,99×2,
  (51)101,
  (52)103,
  …
  (100)199,
  以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其中一个数是另一个数的倍数.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-12 16:58 , Processed in 0.068504 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表