小学论坛

 找回密码
 立即注册
查看: 143|回复: 0

[工程问题] 小学奥数知识系列之--简便方法求余数

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:43:53 | 显示全部楼层 |阅读模式
首届“华罗庚金杯”复赛中有这样一道题:
  71427和19的积被7除,余数是几?
  有恒心的小朋友会先耐心地乘,再耐心地除,最后得到余数.即:

125022_4c5b5f6319a3255.jpg

125022_4c5b5f6319a3255.jpg

740)this.width=740" border=undefined>
  因此,71427与19的积被7除,余数是2.然而,小明却做出了另外一种方法.请看:先用71427和19两个数分别除以7,得到
    

125022_4c5b5f631a5ec55.jpg

125022_4c5b5f631a5ec55.jpg

740)this.width=740" border=undefined>

125022_4c5b5f631bd5555.jpg

125022_4c5b5f631bd5555.jpg

740)this.width=740" border=undefined>
  再利用乘法的分配律变换算式
  71427×19=(10203×7+6)×19
  =10203×7×19+6×19
  =10203×7×19+6×(2×7+5)
  =10203×7×19+6×2×7+6×5
  然后,他想,式中划“――”的部分都是7的倍数,能被7整除.那么,71427×19的积被7除的余数就等于式中划“”的部分(两个余数的乘积)被7除的余数,因此
  6×5=30,
  30÷7=4……余2.
  所要求的余数是2.
  请读者想想看,小明的做法有道理吗?在你认真思考后,如果认为他的做法还具有代表性,那么,你能概括出什么规律来吗?
  【规律】
  两个自然数的乘积被某数除所得的余数,等于两个数分别被某数除所得余数的乘积,再除以某数所得的余数.
  【练习】
  1.71427和71427的积被7除,余数是几?
  2.求下面各式的余数.
  (1)9804×73864÷3;
  (2)9804×73864÷5;
  (3)9804×73864÷7;
  (4)9804×73864÷11;
  (5)9804×73864÷13;
  (6)123456789×987654321÷3;
  (7)123456789×987654321÷5;
  (8)123456789×987654321÷7.
  3.思考下面的两道题.
  (1)123、456、789这三个数连乘的积被3除,余数是几?
  (2)1234、567、78、9四个数连乘的积被3除,余数是几?
  4.再思考下面的两个问题.
  (1)1991、1993、1994、1996、1997、1999、2000这七个数连乘的积被3除,余数是几?
  (2)1至2000中所有不能被3整除的自然数连乘的积除以3,余数是几?
  提示:21、22、23……分别被3除的余数有如下规律:

125022_4c5b5f631e84755.jpg

125022_4c5b5f631e84755.jpg

740)this.width=740" border=undefined>
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-1-24 11:00 , Processed in 0.087031 second(s), 9 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表