小学论坛

 找回密码
 立即注册
查看: 78|回复: 0

[速算与巧算] 三年级奥数:乘法与除法

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:38:23 | 显示全部楼层 |阅读模式
1.算式333×625×125×25×5×16×8×4×2的结果中末尾有多少个零?
       
                  解答:找出算式中含有5的是:625×125×25×5=(5×5×5×5)×(5×5×5)×(5×5)×5,共10个5; 找出算式中含有2的是:16×8×4×2=(2×2×2×2)×(2×2×2)×(2×2)×2,共10个2。每一组5×2=10,产生1个0,所以共有10个0。
       
                 
       
                 
       
                  答:结果中末尾有10个零。
       
                  2.如果n=2×3×5×7×11×13×17×125。那么n的各位数字的和是多少?
       
                  解答:2×3×5×7×11×13×17×125
                    =(7×11×13) ×(3×17) ×(2×5×125)
                    =1001×51×1250
                    =1001×(50×1250+1×1250)
                        =1001×(12500÷2+1250)
                        =1001×(62500+1250)
                        =(1000+1)×63750
                        =63750000+63750
                        =63813750
                        6+3+8+1+3+7+5+0=33      
       
                 
       
                 
       
                  答:n的各位数字的和是33.
       
                  3.(1)计算:5÷(7÷11)÷(11÷15)÷(15÷21),   (2)计算:(11×10×9…×3×2×1)÷(22×24×25×27).
       
                 
       
                 
       
                  解答:(1)5÷(7÷11)÷(11÷15)÷(15÷21)
                     =5×11÷7×15÷11×21÷15
                     =5×11÷11×15÷15×21÷7
                     =5×21÷7
                     =5×3×7÷7
                     =5×3
                          =15
       
                 
       
                 
       
                         (2)(11×10×9…×3×2×1)÷(22×24×25×27)
                    =(11×10×9…×3×2×1)÷22÷24÷25÷27)
                    =(11×2÷22) ×(10×5÷25) ×(9×6 ÷27) ×(8×3÷24) ×7×4
                    =1×2×2×1×7×4
                    =4×28
                    =112
       
                  4.在算式(□□-7×□)÷16=2的各个方框内填入相同的数字后可使等式成立,求这个数字.
       
                  解答:□□-7×□=11×□-7×□=□×(11-7)=□×4, 因为□×4÷16=2,所以□×4=32,□=8
       
                 
       
                 
       
                  答:□=8.
       
                  5. 计算:9×17+91÷17-5×17+45÷17.
       
                  解答:9×17+91÷17-5×17+45÷17
                     =9×17-5×17+91÷17+45÷17
                     =(9-5)×17+(91+45)÷17
                     =4×17+136÷17
                     =68+8
                     =76
       
                  6. 计算:567×142+426×811-8520×50.
       
                  解答:567×142+426×811-8520×50
                     =567×142+3×142×811-8520×100÷2        .
                     =142×(567+3×811)-852000÷2
                          =142×3000-426000
                          =426000-426000
                          =0
       
                  7. 计算:28×5+2×4×35+21×20+14×40+8×62.
       
                  解答:28×5+2×4×35+21×20+14×40+8×62
                     =2×2×7×5+2×4×5×7+3×7×4×5+2×7×5×2×4+8×62
                     =2×2×7×5×(1+2+3+4)+496
                     =10×14×10+496
                     =1400+496
                     =1896
       
                  8. 计算:55×66+66×77+77×88+88×99.
       
                  解答:55×66+66×77+77×88+88×99
                     =(11×5)×(11×6)+(11×6)×(11×7)+(11×7)×(11×8)+(11×8)×(11×9)
                     =11×11×(5×6+6×7+7×8+8×9)
                     =11×(10+1)×(30+42+56+72)
                     =(110+11)×200
                     =121×200
                     =24200
       
                  9. 计算:(123456+234561+345612+456123+561234+612345) ÷7.
       
                  解答:(123456+234561+345612+456123+561234+612345) ÷7
                     =[(1×100000+2×10000+3×1000+4×100+5×10+6)+(2×100000+3×10000+4×1000+5×100+6×10+1)+(3×100000+4×10000+5×1000+6×100+1×10+2)+(4×100000+5×10000+6×1000+1×100+2×10+3)+(5×100000+6×10000+1×1000+2×100+3×10+4)+(6×100000+1×10000+2×1000+3×100+4×10+5)] ÷7
                     =[1+2+3+4+5+6]×100000+(2+3+4+5+6+1)×10000+(3+4+5+6+1+2)×1000+(4+5+6+1+2+3)×100+(5+6+1+2+3+4)×10+(6+1+2+3+4+5)×1] ÷7
                     =(21×100000+21×10000+21×1000+21×100+21×10+21×1)÷7
                     =21×100000÷7+21×10000÷7+21×1000÷7+21×100÷7+21×10÷7+21×1÷7
                     =300000+30000+3000+300+30+3
                     =333333
       
                  10. (87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14.
       
                  解答:(87+56+73+75+83+63+57+53+67+78+65+77+84+62) ÷14
                     =[(8+5+7+7+8+6+5+5+6+7+6+7+8+6)×10+(7+6+3+5+3+3+7+3+7+8+5+7+4+2)]÷14
                     =[(14×7-7)×10+(14×7-28)] ÷14
                     =[(13×7)×10+(10×7)]÷14
                     =(130+10)×7÷14
                     =140×7÷14
                     =10×7
                     =70
       
                  11.在算是12345679×□=888888888,12345679×~=555555555的方框和圆圈内分别填入恰当的数后可使两个等式都成立,求所填的两个数之和.
       
                  解答:□×9个位是8,~×9个位是5,所以□的个位是2,~的个位是5。
       
                 
       
                 
       
                     12000000×82>888888888,13000000×62
       
                 
       
                 
       
                     12000000×55>555555555, 13000000×35
       
                 
       
                 
       
                     72+45=117
       
                 
       
                 
       
                  答:所填的两个数之和是117.
       
                12.计算:(1)42×45,(2)31×39,(3)45×45,(4)132×138.
       
                  解答:(1)42×45=42×(50-5)=2100-210=1890
       
                 
       
                 
       
                   (2)31×39=31×(40-1)=1240-31=1209
       
                 
       
                 
       
                   (3)45×45=45×(50-5)=2250-225=2025
       
                 
       
                 
       
                   (4)132×138=(100+30+2)×138=13800+4140+276=18216
       
                  13.计算:(1)13579×11,(2)124×111,(3)1111×1111.
       
                  解答:(1)13579×11=13579×(10+1)=135790+13579=149369
       
                 
       
                 
       
                       (2)124×111=124×(100+10+1)=12400+1240+124=13764
       
                 
       
                 
       
                     (3)1111×1111=1111×(1000+100+10+1)=1111000++111100+11110+1111=1234321
       
                  14.(1)给出首位是1的两位数的简便算法,据此计算10至19中任意两数的乘积,并排列成一个乘法表. (2)有一类小于200的自然数,每一个数的各位数字之和是奇数,而且都是两个两位数的乘积,例如144=12×12.那么在此类自然数中,第三大的数是多少?
       
                  解答:(1)1□×1△
                     =(10+□) ×(1△)
                     =10×1△+□×1△
                     =100+△×10+□×10+□×△
                     =100+(△+□) ×10+□×△
       
                 
       
                 
       
                   首位是1的两位数的乘积=100+两个数个位数字之和的10倍+两个数个位数字之积
       
                 
       
                 
       
                   首位是1的两位数乘法表
       
                 
       
                 
       
                10   100
       
                 
       
                 
       
                11   110   121
       
                 
       
                 
       
                12   120   132   144
       
                 
       
                 
       
                13   130   143   156   169
       
                 
       
                 
       
                14   140   154   168   182   196
       
                 
       
                 
       
                15   150   165   180   195   210   225
       
                 
       
                 
       
                16   160   176   192   208   224   240   256
       
                 
       
                 
       
                17   170   187   204   221   238   255   272   289
       
                 
       
                 
       
                18   180   198   216   234   252   270   288   306   324
       
                 
       
                 
       
                19   190   209   228   247   266   285   304   323   342   361
       
                 
       
                 
       
                      10    11    12    13    14    15    16    17    18    19
       
                 
       
                 
       
                  (2)最大的是195=13×15,其次是182=13×14,再次是180=12×15
       
                 
       
                 
       
                   在此类自然数中,第三大的数是180.
       
                  15.有16张纸,每张纸的正面用红色笔任意写1,2,3,4中的某个数字,在反面用蓝笔也写1,2,3,4中的某个数字,要求红色数相同的任何两张纸上,所写的蓝色数一定不同.现在把每张纸上的红、蓝两个数相乘,求这16个乘积的和.
       
                  解答:红1可对应?,2,3,4;红2可对应蓝1,2,3,4;红3可对应蓝1,2,3,4;红4可对应蓝1,2,3,4,共有16种不同的情况。因为红色数相同的任何两张纸上,所写的蓝色数一定不同,所以这16张纸正好就是这16种情况。
       
                 
       
                 
       
                  (1×1+1×2+1×3+1×4)+(2×1+2×2+2×3+2×4)+(3×1+3×2+3×3+3×4)+(4×1+4×2+4×3+4×4)
                     =(1+2+3+4)×(1+2+3+4)
                     =10×10
                     =100
       
                 
       
                 
       
                  答:这16个乘积的和是100.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-25 15:48 , Processed in 0.050044 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表