小学论坛

 找回密码
 立即注册
查看: 96|回复: 0

[速算与巧算] 数学学习乐园之一百二十七(质数)

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:28:21 | 显示全部楼层 |阅读模式
  质数就是只能被1或其本身整除的整数,例如:
  5 29 41 83
  唯一的偶数质数是2,因为按照定义,所有其他的偶数,如6、10、28的因数,除了1与其本身之外,都包括2.故除了2以外,所有质数都是奇数.
  长久以来,许多数学家对于哪些数为质数,以及质数的分布情形都很感兴趣.与质数有关的定理,最早可追溯至公元前3世纪的欧几里德,他以很简洁的方法证明有无穷多个质数.
  有时质数之间非常接近,例如:
  2 3 5 7 11 13
  但有时也非常稀疏,像是23与37之间,就只有两个质数.请问这两个质数是多少?
  在小于100的数中,找质数比较容易,但在100之后,质数之间的距离就大得多了.
  试找出113之后的下一个质数.
  不过即使如此,在小于100的数中,通常10个连续的数中就会包含一个质数.
  那么在190与200之间有多少质数?
  数学家已证明,只要数字够多(如5000以内),就一定可以找到不包含一个质数的连续整数序列.
  与质数有关的理论相当多,但其中也有不少猜想尚待证明.
  (1)其中最著名的猜想就是“哥德巴赫猜想”(Goldbach Conjecture).这是哥德巴赫在1742年写给欧拉的信中提到的猜想,其内容为:
  除了2以外的任何偶数,都可以用两个质数的和表示.
  欧拉无法证明这个猜想.时至今日,虽然没有发现任何反例,但还是无人能予以证明.
  将28、50、100、246以两个质数之和表示.是否只有一种表示方式?
  (2)除了2以外,所有的质数都是奇数,因此任何两个质数(除了2)的差是偶数.这或许很明显,但有趣的是:
  所有的偶数都是两连续质数的差.
  请说明对下列偶数这种说法可以成立.
  2 4 6 8 10 12 14
  要得到上面的结果,你所找的质数不会大于250.
  (3)在1848年,波里奈克(de Polignac)指出:
  每一个奇数都可以用一个质数与一个2的乘方之和表示.
  例如:25=17+23.
  随机选择一些奇数,测试波里奈克的猜测,是否只有一种表示方法?
  (4)质数通常以连续奇数成对出现,如5与7、17与19、29与31.一般相信这种成对的质数有无限多个,但尚无人能加以证明.
  在150与200之间只有3对这样的质数,请把它们找出来!
  (5)研究下列的猜测:
  ①在连续的平方数之间,至少有一个质数.
  ②除了2与3之外的每一个质数,都可以写成6n±1的形式,其中n为自然数.
  ③任何具有4n+1形式的奇质数,等于两个完全平方数之和.
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-10-18 21:24 , Processed in 0.071796 second(s), 14 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表