小学论坛

 找回密码
 立即注册
查看: 181|回复: 0

[加法原理] 加法原理练习题5

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:10:00 | 显示全部楼层 |阅读模式
  1、两次掷一枚骰子,两次出现的数字之和为偶数的情况有多少种?
  分析与解:两次的数字之和是偶数可以分为两类,即两数都是奇数,或者两数都是偶数。
  因为骰子上有三个奇数,所以两数都是奇数的有3×3=9(种)情况;同理,两数都是偶数的也有9种情况。根据加法原理,两次出现的数字之和为偶数的情况有9+9=18(种)。
  2、用五种颜色给右图的五个区域染色,每个区域染一种颜色,相邻的区域染不同的颜色。问:共有多少种不同的染色方法?

20092515434173435.jpg

20092515434173435.jpg

  分析与解:本题与上一讲的例4表面上十分相似,但解法上却不相同。因为上一讲例4中,区域A与其它区域都相邻,所以区域A与其它区域的颜色都不相同。本例中没有一个区域与其它所有区域都相邻,如果从区域A开始讨论,那么就要分区域A与区域E的颜色相同与不同两种情况。
  当区域A与区域E颜色相同时,A有5种颜色可选;B有4种颜色可选;C有3种颜色可选;D也有3种颜色可选。根据乘法原理,此时不同的染色方法有
  5×4×3×3=180(种)。
  当区域A与区域E颜色不同时,A有5种颜色可选;E有4种颜色可选;B有3种颜色可选;C有2种颜色可选;D有2种颜色可选。根据乘法原理,此时不同的染色方法有
  5×4×3×2×2=240(种)。
  再根据加法原理,不同的染色方法共有
  180+240=420(种)。

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-1-23 15:13 , Processed in 0.082211 second(s), 9 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表