小学论坛

 找回密码
 立即注册
查看: 99|回复: 0

数学之美

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-13 13:01:35 | 显示全部楼层 |阅读模式

          
          

  •        

      12
                                      张奠宙与木振武两位先生在《数学美与课堂教学》中把数学美分成了4个层次:美观、美好、美妙、完美。
      现将其中部分摘录如下:
      1、美观:数学对象以形式上的对称、和谐、简洁,总给人的观感带来美丽、漂亮的感受。
      比如:几何学常常给人们直观的美学形象,美观、匀称、无可非议;
      在算术、代数科目中也很多:
      如(a+b)·c=a·c+b·c;
      a+b=b+a
      这些公式和法则非常对称与和谐,同样给人以美观感受。
      但是外形上的的美观,并不一定是真实和正确的。
      比如:sin(A+B)=sinA+sinB是何等的“对称”、“和谐”、“美观”啊!但是它是错误的,就象“”虽然美丽但是有“毒”。
      2、美好:数学上的许多东西,只有认识到它的正确性,才能感觉到它的“美好”。
      不美丽的例子很多,比如二次方程的求根公式,无论从哪方面看都不对称、不和谐、不美观。但是,当我们真正了解它、运用它,就会感到它的价值,它的美好。这一公式告诉我们许多信息:±表示它有两个根,a≠0、△会显示根的数目和方程的性质……
      3、美妙:美妙的感觉需要培养,美妙的感觉往往来自“意料之外”但在“情理之中”的事物。三角形的高交于一点就是这样;2个圆柱体垂直相截后将截面展开,其截线所对应的曲线竟然是一条正弦曲线,与原来猜想的是一断圆弧大出“意料之外”,经过分析证明的确是正弦曲线,又在“情理之中”,美妙的感觉就油然而生了。
      4、完美:数学总是尽量做到完美无缺。这就是数学的最高“品质”和最高的精神“境界”。欧氏几何公理化体系的建立,“1+1”的证明都是追求数学完美的典型例子。

  • 回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    小黑屋|手机版|Archiver|新都网

    GMT+8, 2025-4-26 08:38 , Processed in 0.056047 second(s), 7 queries , WinCache On.

    Powered by Discuz! X3.4

    © 2001-2017 Comsenz Inc.

    快速回复 返回顶部 返回列表