小学论坛

 找回密码
 立即注册
查看: 75|回复: 0

小升初奥数知识点解析:余数问题

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-9 17:22:18 | 显示全部楼层 |阅读模式
  在小升初备战的过程中,奥数学习一直以来都是小升初备考生复习的重点。下面是奥数网小编整理的小升初六年级奥数知识点解析,供大家参考。
        小升初奥数知识点解析:余数问题
          余数、同余与周期
          一、同余的定义:
          ①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
          ②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
          二、同余的性质:
          ①自身性:a≡a(mod m);
          ②对称性:若a≡b(mod m),则b≡a(mod m);
          ③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
          ④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
          ⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
          ⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
          ⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
          三、关于乘方的预备知识:
          ①若A=a×b,则MA=Ma×b=(Ma)b
          ②若B=c+d则MB=Mc+d=Mc×Md
          四、被3、9、11除后的余数特征:
          ①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
          ②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
          五、费尔马小定理:
          如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
        编辑推荐:
        4f38cce3d56d152.shtml (49.42 KB, 下载次数: 5)
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-8-23 05:45 , Processed in 0.059858 second(s), 10 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表