数学智力题:牛顿牛吃草问题
数学智力题:牛顿牛吃草问题牛顿牛吃草问题
英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天;或者供给16头牛吃,可以吃10天。如果供给25头牛吃,可以吃几天?
答案:因为这片草地上的草天天都以同样的速度在生长。设草地上原有草量为a,每头牛每天吃草b,草每天生长量为c,那么a+22c=10×22×b,a+10c=16×10×b,两式相减,c=5b。也就是说草地上每天新长出的草够5头牛吃。所以只需知道草地上原有的草够吃几天即可。原有的草够(10-5)头牛吃22天,够(16-5)头牛吃10天。由此可以求出,够(25-5)头牛吃5.5天。所以,这片草地可以供25头牛吃5.5天。
页:
[1]