推理题及分析:海盗分金
争当数学小侦探,开动脑筋快来思考推理题!推理题分析见下页。海盗分金
“海盗分金”是一个理论模型。5名海盗打算瓜分抢来的100块金币。他们习惯于按自己的民主方式进行分配:首先抽签决定各人的号码(1,2,3,4,5),然后由1号提出分配方案,5人进行表决,超过半数同意方案才被通过,否则他将被扔入大海喂鲨鱼,1号死后,由2号提方案,4人表决,超过半数同意方案通过,否则2号同样被扔入大海,依次类推。那么“第一个海盗提出怎样的分配方案才能够使自己的收益最大化”并得以通过表决?
点击下一页查看答案
答案:
1号强盗分给3号1枚金币,4号或5号强盗2枚,放弃2号,独得97枚。
分配方案可写成97,0,1,2,0。
推理过程是这样的:从后向前推,如果只剩4号和5号的话,5号一定会投反对票让4号喂鲨鱼,以独吞全部金币。所以,4号唯有支持3号才能保命。3号知道这一点,就会提(100,0,0)的分配方案,对4号、5号一毛不拔而将全部金币归为己有,因为他知道4号一无所获也会投赞成票,再加上自己一票他的方案即可通过。不过,2号推知到3号的方案,就会提出(98,0,1,1)的方案,即放弃3号,而给予4号和5号各一枚金币。由于该方案对于4号和5号来说比在3号分配时更为有利,他们将支持他而不希望由3号来分配。这样,2号将拿走98枚金币。不过,2号的方案会被1号所洞悉,1号并将提出(97,0,1,2,0)或(97,0,1,0,2)的方案,即放弃2号,而给3号一枚金币,同时给4号(或5号)2枚金币。由于1号的这一方案对于3号和4号(或5号)来说,相比2号分配时更优,他们将投1号的赞成票,再加上1号自己的票,1号的方案可获通过,97枚金币可轻松落入囊中。
页:
[1]