五年级奥数天天练及答案2013.4.10
题型:数论问题 难度:★★★★在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成10等份,第二种刻度线把木棍分成12等份,第三种刻度线把木棍分成15等份,如果沿每条刻度线把木棍锯断,木棍总共被锯成多少段?
点击下一页查看答案
【答案解析】
从题目中可以知道,木棍锯成的段数,比锯的次数大1;而锯的次数并不一定是三种刻度线的总和,因为当两种刻度线重合在一起的时候,就会少锯一次.所以本题的关键在于计算出有多少两种刻度线或者三种刻度线重叠在一起的位置.
把木棍看成是10、12、15的最小公倍数个单位,那么每个等分线将表示的数都是整数,而且重合位置表示的数都是等分线段长度的公倍数,利用求公倍数的个数的方法计算出重合的刻度线的条数.
相关推荐:
-------------------------------------------------------------------------------------
《小学奥数系统总复习》 图书简介
《小学奥数系统总复习》分 上下两册,涵盖了奥数中8大专题,共设21讲。每讲设置4大模块,即闯关目标、赛前热身、实战演练和逐级闯关,构建了完整的奥数知识体系,全面覆盖小学奥 数知识。此外,本书对部分经典例题录制了视频,免费赠送给各位学员。本书附有2010年和2011年的北京集训队选拔试题,为本书增加了新的亮点。
为了让大家更好的获得知识、理解知识,本书设有论坛交流环节,读者可以登录,即可实现在线提问、交流心得,名师天天坐镇论坛,等你来交流!
页:
[1]