小学论坛

 找回密码
 立即注册
查看: 40|回复: 1

[数的整除问题] 五年级奥数题及答案:平方差(高等难度)

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:59:45 | 显示全部楼层 |阅读模式
  平方差:(高等难度)
       
          有这样一类数,它们可以写作两个自然数的平方差,如 3=22-12,被称作智慧树,那么从1开始,第1993个智慧数是多少?
       
          
       
        更多试题:
        4b8bd68d5b81252.shtml (103.76 KB, 下载次数: 0)

4b8bd68d55a4952.shtml

103.74 KB, 下载次数: 0

4b8bd68d55a4952.shtml

回复

使用道具 举报

0

主题

1万

帖子

3万

积分

论坛元老

Rank: 8Rank: 8

积分
31364
发表于 2016-8-15 11:13:59 | 显示全部楼层

          平方差答案:
       
          对于任意奇数2k+1=(k+1)2-k2 ,但1不符合要求,舍去 2,对于所有能被4整除的数, 4k=(k+1)2-(k-1)2,但4不符合要求,舍去 3,对于被4除余2的数,假设4k+2=x2-y2=(x-y)(x+y),当 奇偶性相同时,(x-y)(x+y)可被4整除,与提设矛盾,舍去;当xy 奇偶性不同时,(x-y)(x+y) 为奇数,与提设矛盾,舍去. 显然,从5开始每4个数中有3个是智慧数,而1到4中只有3只智慧数,第1993个智慧数为(1993-1)÷3×4+4=2660。
        .
         
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-2-16 03:47 , Processed in 0.068836 second(s), 10 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表