小学论坛

 找回密码
 立即注册
查看: 91|回复: 1

[数的整除问题] 五年级奥数题:数的计算

[复制链接]

28万

主题

28万

帖子

84万

积分

论坛元老

Rank: 8Rank: 8

积分
848531
发表于 2016-8-15 10:57:03 | 显示全部楼层 |阅读模式
  五年级奥数题:数的计算
          1.从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12?
          2.123456789101112……484950是一个多位数,从中划去80个数字,使剩下的数字(先后顺序不变)组成最大的多位数,这个最大的多位数是多少?
          点击下一页查看答案
回复

使用道具 举报

0

主题

1万

帖子

3万

积分

论坛元老

Rank: 8Rank: 8

积分
31364
发表于 2016-8-15 11:58:42 | 显示全部楼层

          1.解答
          20个自然数中,差是12的有以下8对:
          {20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
          另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉)。只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12)。
          2.解答
          123456789101112……484950,共有数字:9+2×(50-10+1)=91 (个),从中划去80个数字,剩下的数字有:91-80=11(个),组成一个11位数,题目要求这个11位数是最大的,当然要尽量保留数字9。
          这个多位数有5个9,若要让5个9连在一起,就不能组成一个11位数,所以最右边的9不能保留。
          保留4个9,后面也不能取8,否则这个数就不是11位数。保留4个9,后面如果是7,刚好组成一个11位数,因此,所求的最大11位数是99997484950。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|新都网

GMT+8, 2025-9-18 23:35 , Processed in 0.056847 second(s), 8 queries , WinCache On.

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表