小学教育网 发表于 2017-4-7 20:15:06

小升初数学和差倍应用题2

2.2倍数问题

  当知道了两个数的和或者差,又知道这两个数之间的倍数关系,就能立即求出这两个数.小学算术中常见的“年龄问题”是这类问题的典型.先看几个基础性的例子.

  例8 有两堆棋子,第一堆有87个,第二堆有69个.那么从第一堆拿多少个棋子到第二堆,就能使第二堆棋子数是第一堆的3倍.

  解:两堆棋子共有87+69=156(个).

  为了使第二堆棋子数是第一堆的3倍,就要把156个棋子分成1+3=4(份),即每份有棋子

  156 ÷(1+3)=39(个).

  第一堆应留下棋子39个,其余棋子都应拿到第二堆去.因此从第一堆拿到第二堆的棋子数是

  87-39=48(个).

  答:应从第一堆拿48个棋子到第二堆去.

  例9 有两层书架,共有书173本.从第一层拿走38本书后,第二层的书比第一层的2倍还多6本.问第二层有多少本书?

  解:我们画出下列示意图:
/collect/201608/14/wps_clip_image-49209.png

  我们把第一层(拿走38本后)余下的书算作1“份”,那么第二层的书是2份还多6本.再去掉这6本,即
  173-38-6=129(本)
  恰好是3份,每一份是
  129÷3=43(本).
  因此,第二层的书共有
  43×2 + 6=92(本).

  答:书架的第二层有92本书.

  说明:我们先设立“1份”,使计算有了很方便的计算单位.这是解应用题常用的方法,特别对倍数问题极为有效.把份数表示在示意图上,更是一目了然.

  例10 某小学有学生975人.全校男生人数是六年级学生人数的4倍少23人,全校女生人数是六年级学生人数的3倍多11人.问全校有男、女生各多少人?

  解:设六年级学生人数是“1份”.
  男生是4份-23人.
  女生是3份+11人.
  全校是7份-(23-11)人.
  每份是(975+12)÷7=141(人).
  男生人数=141×4-23=541(人).
  女生人数=975-541=434(人).

  答:有男生541人、女生434人.

  例9与例10是一个类型的问题,但稍有差别.请读者想一想,“差别”在哪里?

  
/collect/201608/14/wps_clip_image-108109.png
  70双皮鞋.此时皮鞋数恰好是旅游鞋数的2倍.问原来两种鞋各有几双?

  解:为了计算方便,把原来旅游鞋算作4份,售出1份,还有3份.那么原有皮鞋增加70双后将是3×2=6(份).400+70将是 3+1+6=10(份).每份是(400+70)÷10=47(双).

  原有旅游鞋 47×4=188(双).

  原有皮鞋 47×6-70=212 (双).

  答:原有旅游鞋188双,皮鞋212双.

  设整数的份数,使计算简单方便.小学算术中小数、分数尽可能整数化,使思考、计算都较简捷.因此,“尽可能整数化”将会贯穿在以后的章节中.

  下面例子将是本节的主要内容──年龄问题.

  年龄问题是小学算术中常见的一类问题,这类题目中常常有“倍数”这一条件.解年龄问题最关键的一点是:两个人的年龄差总保持不变.

  例12 父亲现年50岁,女儿现年14岁.问几年前,父亲的年龄是女儿年龄的5倍?
  解:父女相差36岁,这个差是不变的.几年前还是相差36岁.当父亲的年龄恰好是女儿年龄的5倍时,父亲仍比女儿大36岁.这36岁是女儿年龄的(5-1)倍.
  36÷(5-1)=9.
  当时女儿是9岁,14-9=5,也就是5年前.
  答:5年前,父亲年龄是女儿年龄的5倍.
  例13 有大、小两个水池,大水池里已有水 300立方米.小水池里已有水70立方米.现在往两个水池里注入同样多的水后,大水池水量是小水池水量的3倍.问每个水池注入了多少立方米的水.
  解:画出下面示意图:
/collect/201608/14/wps_clip_image-182909.png
  我们把小水池注入水后的水量算作1份,大水池注入水后的水量就是3份.从图上可以看出,因为注入两个水池的水量相等,所以大水池比小水池多的水量(300-70)是2份.
  因此每份是
  (300-70)÷2= 115(立方米).
  要注入的水量是
  115-70=45 (立方米)·
  答:每个水池要注入45立方米的水.
  例13与年龄问题是完全一样的问题.“注入水”相当于年龄问题中的“几年后”.
  例14 今年哥俩的岁数加起来是55岁.曾经有一年,哥哥的岁数与今年弟弟的岁数相同,那时哥哥的岁数恰好是弟弟岁数的两倍.哥哥今年几岁?
  解:当哥哥的岁数恰好是弟弟岁数的2倍时,我们设那时弟弟的岁数是1份,哥哥的岁数是2份,那么哥哥与弟弟的岁数之差是1份.两人的岁数之差是不会变的,今年他们的年龄仍相差1份.
  题目又告诉我们,那时哥哥岁数,与今年弟弟的岁数相同,因此今年弟弟的岁数也是2份,而哥哥今年的岁数应是2+1=3(份).
  今年,哥弟俩年龄之和是
  3+2=5(份).
  每份是 55÷5= 11(岁).
  哥哥今年的岁数是 11×3=33(岁).
  答:哥哥今年33岁.
  作为本节最后一个例子,我们将年龄问题进行一点变化.
  例15 父年38岁,母年36岁,儿子年龄为11岁.
  问多少年后,父母年龄之和是儿子年龄的4倍?
  解:现在父母年龄之和是
  38+ 36 = 74.
  现在儿子年龄的 4倍是 11×4=44.相差
  74-44= 30.
  从4倍来考虑,以后每年长1×4=4,而父母年龄之和每年长1+1=2.
  为追上相差的30,要
  30÷(4-2)=15(年)·
  答:15年后,父母年龄之和是儿子年龄的4倍.
  请读者用例15的解题思路,解习题二的第7题.也许就能完全掌握这一解题技巧了.
  请读者想一想,例15的解法,与例12的解法,是否不一样?各有什么特点?
  我们也可以用例15解法来解例12.具体做法有下面算式:
  (14 ×5-50)÷(5-1)= 5(年).
  不过要注意 14×5比 50多,因此是 5年前.
页: [1]
查看完整版本: 小升初数学和差倍应用题2