六年级奥数试题:容斥原理A(附答案详解)
十七 容斥原理(1)年级 班 姓名 得分
一、填空题
1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书.借语文课外书的有39人,借数学课外书的有32人.语文、数学两种课外书都借的有 人.
2.有长8厘米,宽6厘米的长方形与边长为5厘米的正方形,如图,放在桌面上(阴影是图形的重叠部分),那么这两个图形盖住桌面的面积是 平方厘米.
8
6
5
4
3
3.在1~100的自然数中,是5的倍数或是7的倍数的数有 个.
4.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为 人.
5.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有 人.
6.在1至10000中不能被5或7整除的数共有 个.
7.在1至10000之间既不是完全平方数,也不是完全立方数的整数有 个.
8.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有 人.
9.分母是1001的最简真分数有 个.
10.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有 人,最多有 人.
二、解答题
11.某进修班有50人,开甲、乙、丙三门进修课、选修甲这门课的有38人,选修乙这门课有的35人,选修丙这门课的有31人,兼选甲、乙两门课的有29人,兼选甲、丙两门课的有28人,兼选乙、丙两门课的有26人,甲、乙、丙三科均选的有24人.问三科均未选的人数?
12.求小于1001且与1001互质的所有自然数的和.
13.如图所示,A、B、C分别代表面积为8、9、11的三张不同形状的纸片,它们重叠放在一起盖住的面积是18,且A与B,B与C,C与A公共部分的面积分别是5、3、4,求A、B、C三个图形公共部分(阴影部分)的面积.
A
B
C
14.分母是385的最简真分数有多少个,并求这些真分数的和.
———————————————答 案——————————————————————
1.26
从图中可以看出全班45人,借语文或数学课外读物的共39+32=71(人),超过全班人数71-45=26(人),这26人都借了语文、数学两种课外书。
39人
32人
数学
语文
共45人
2.67
将长方形和正文形面积相加,则图中阴影部分即三角形面积被多算了一次,即这两个图形盖住的图形面积为 (平方厘米).
3.32
在1到100这100个自然数中,5的倍数有20个,7的倍数有14个,既是5的倍数又是7的倍数有2个,故5的倍数或7的倍数的个数是20+14-2=32.
4.45
从图中可以看出:懂俄语的人数(即阴影部分)等于总人数减去只懂英语的人数,即100-(75-20)=45(人)
20
75
英
俄
5.19
所求人数=全班人数-(会骑车人数+会游泳人数-既会骑车又会游泳人数)=46-(17+14-4)=19(人)
会游泳
会奇车
全班
6.6857
在1到10000中,能被5整除的有 (个),能被7整除的有 (个),能被35整除的有 (个).因此能被5或7整除的共有2000+1428-285=3143(个).从而不能被5或7整除的有10000-3143=6857(个).
7.9883
1~10000中完全平方数有100个(因为1002=10000),完全立方数有21个(因为2133),完全六次方数有4个(因为466)
故1~10000中是完全平方数或完全立方数的数共有100+21-4=117个;从而既不是完全平方数,又不是完全立方数的数有10000-117=9883(个).
8.4
10
12
20
6
2
x
排球队
足球队
蓝球队
如图所示,设既参加是球队又参加排球队的人数为x,则依容斥原理,有20+12+10-6-2-x=30,解得x=4.
9.720
1~1001中,有7的倍数 (个);有11的倍数 (个),有13的倍数 (个);有7´11=77的倍数 (个),有7´13=91的倍数 (个),有11´13=143的倍数 (个).有1001的倍数1个.
由容斥原理知:在1~1001中,能被7或11或13整除的数有(43+91+7)-(13+11+7)+1=281(个),从而不能被7、11或13整除的数有1001-281=720(个).也就是说,分母为1001的最简分数有720个.
10.31,56
如图,当100人都是或者音乐爱好者,或者体育爱好者时,这两者都爱好的人数为最小值即56+75-100=31(个).
当所有的音乐爱好者都是音乐爱好者时,这两者都爱好的人数最大可为56人.
音乐
爱好者
体育
爱好者
11. 如图,选甲乙而不选丙的有a=29-24=5(人),选甲丙而不选乙的b=28-
24=4(人),选乙丙而不选甲的有c=26-24=2(人), 仅选了丁的人有d=35-24-a-c=4(人),仅选了丙的人有e=31-24-b-c=1(人),故少选了一科的人数是:甲+d+c+e=45(人),故三门均未选的人数为50-45=5(人).
甲
乙
丙
24
a
b
c
d
e
12.由第9题的结论知分母是1001的最简分数的个数是720.又真分数 和真分数(a与1001互质)是成对出现的,故上述720个真分数可以分成360对,每一对=数之和为1,故上述720个分母是1001的真分数之和为360.
所以所有小于1001且与1001互质的数之和为360´1001=360360.
13. 设阴影部分的面积是x,由容斥原理知28-(5+3+4)+x=18,故x=2.
14. 因为385=5´7´11,故在1~385这385个自然数中,5的倍数有
(个),7的倍数有 (个),11的倍数有 (个), 5´7=35的倍数有 (个),5´11=55的倍数有 (个),7´11=77的倍数有 =5(个),385的倍数有1个.
由容斥原理知,在1~385中能被5、7或11整除的数有77+55+35-(11+7+5)+1=145(个),而5、7、11互质的数有385-145=240(个).即分母为385的真分数有240(个).
如果有一个真分数为 ,则必还有另一个真分数 ,即以385为分母的最简真分数是成对出现的,而每一对之和恰为1.故以385为分母的240最简分数可以分成120时,它们的和为1´120=120.
页:
[1]