小学教育网 发表于 2016-8-18 08:28:29

一道“希望杯”数学题的七种解法

  一题多解是培养人们开发思维的极好途径,可以启发孩子用多种方法来解决问题,培养孩子多思考多动脑的好习惯,不仅对课本习题可采用此法,对竞赛题也不例外,请看一道竞赛题的几种不同解法,也许对提高我们的解题能力有所启发。
       
          题目:计算1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-2000,最后结果是()
       
          (A)0(B)-1
       
          (C)1999(D)-2000
       
          原题所给的参考答案为:
       
          原式=1+(2-3-4+5)+(6-7-8+9)+(10-11-12+13)+…+(1994-1995-1996+1997)+(1998-1999)-2000=1+0+0+…+0-1-2000=-2000,故选(D)。
       
       
          以上解法我们权且称作不均匀分组法。下面我们再给出几种不同解法。
       
          解法一:观察法
       
          ∵1+2-3-4=-4,1+2-3-4+5+6-7-8=-8,1+2-3-4+5+6-7-8+9+10-11-12=-12,…
       
          经观察知,每一“片断”的代数和均为参加运算的最后一个数,故原式=-2000,选(D)。
       
          解法二:小段均匀分组法
       
          将式中每连续4个数分为一组,则有1+2-3-4=-4,5+6-7-8=-4,9+10-11-12=-4,…,∴2000÷4=500(组),故原式=500×(-4)=-2000.
       
          解法三:凑零法
       
          ∵-0+1+2-3=0,-4+5+6-7=0,…,-1996+1997+1998-1999=0,∴原式=0+0+…+0-2000=-2000.
       
          解法四:大段均匀分组法
       
          按个位数0,1,2,3,…,8,9分为一大组,进行计算,则有
       
          1+2-3-4+5+6-7-8+9=-0+1+2-3-4+5+6-7-8+9=1,
       
          又10-11-12+13+14-15-16+17+18-19=-1
       
          而-20+21+22-23-24+25+26-27-28+29=1
       
          另外:30-31-32+33+34-35-36+37+38-39=-1,…
       
          1990-1991-1992+1993+1994-1995-1996+1997+1998-1999=-1.
       
          ∴原式=1-1+1-1+…+1-1-2000=0+0+…+0-2000=-2000.
       
          解法五:添数法
       
          每一个方框数之和为-2,而这样的方框有1000个,将每个方框中添加2,故有:原式+2000=0.
       
          ∴原式=-2000.
       
          解法六:隔数相加法
       
          在1+2-3-4+5+6-7-8+9+10-11-12+…+1993+1994-1995-1996+1997+1998-1999-2000中
       
          隔数相加:如1-3=-2,2-4=-2,5-7=-2,…,这样的数对共有1000对,∴原式=-2×1000=-2000.
       
          解法七:倒序错位相加法
       
          令1+2-3-4+5+6-7-8+…+1997+1998-1999-2000=T
       
          ∴有1+2-3-4+5+6-7-8+…+1997+1998-1999-2000
       
          故2T=3-2003-2003+3=-4000,∴T=-2000.
       
          以上几种解法各有千秋。繁简程度各异,仅体现了不同的思维方式,也展现了思维的广阔性和灵活性,有助于我们拓展视野。
       
页: [1]
查看完整版本: 一道“希望杯”数学题的七种解法