小学教育网 发表于 2016-8-17 08:59:14

数论之完全平方数练习17

  证明3(5n+1)不是平方数(n为自然数)。
  证明:现在,假设n为奇数:不管n为哪个奇数,5n的末位数一定是5。这样,式子变成了3×(5+1),等于18,末位是8。可是根据这一条完全平方数的性质,就能判别正误了。
  请看这边:完全平方数的末位数字只能是0、1、4、5、6、9这6个数中的某一个。显然不对。看看偶数会怎么样。
  如果n为偶数,这样5n末位一定为0。式子现在又变成了:3×(0+1),等于3。还是看上面完全平方数的定律,答案也是错。现在已经证明出来了。
  这一道题告诉我,当我遇到像这种证明题,看看用分类证明的方法是不是最好。其实,这题目也不是很难,关键在于我们是否能从数的末位去巧做完全平方数的题!

页: [1]
查看完整版本: 数论之完全平方数练习17