六年级奥数试题及答案:钟面问题
王师傅2点多钟开始工作时,时针与分针正好重合在一起.5点多钟完工时,时针与分针正好又重合在一起.王师傅工作了多长时间?点击下一页查看答案
考点:时间与钟面.
分析:从夜里0:00开始分针和时针同时出发,一周的路程为360度,分针速度为360度÷60分,时针的速度为30度÷60分,分钟快,时针慢,分针跑一周后继续跑追上时针,两者间距为360度,时间假设为t分钟,列式计算:(360度÷60分)×t分-(30度÷60分)×t分=360度,
http://www.aoshu.com/e/20140228/
解答:从夜里0:00开始分针和时针同时出发,一周的路程为360度,分针速度为360度÷60分,时针的速度为30度÷60分,分钟快,时针慢,分针跑一周后继续跑追上时针,两者间距为360度,时间假设为t分钟,列式计算:
/collect/201608/14/40401.html
点评:判断出2点重合和5点的重合分别是第二次重合和第五次重合,根据时针和分针的运动规律,分钟运动的时间即表从0:00开始的总时间,由分化成小时减去60的倍数即得现在的时间是几时几分.
页:
[1]