小学教育网 发表于 2016-8-16 15:27:21

三年级数学教案——《以人为本构建和谐的数学课堂》教案

  各位老师:
  大家好,很荣幸能参加这次活动并和大家一起学习交流。今天,我想围绕“以人为本,构建和谐的数学课堂”为主题,把自己在实验教材三年级下册教学过程中遇到的一些问题,自己在教学中的一些尝试,一些想法与大家交流。
  我今天和大家交流的主要是数与代数和解决问题两部分内容。这一册的数与代数涉及计算、常见的量、数的认识。这些都是老教材里的内容,相信在场的很多老师都教过。并且在理解上肯定比我深刻、渗透,也比我有经验。那将这些知识安排中在新课程中,会发生怎么变化呢?这是大家所关心的。接下来让我们一起来看看。
  第二单元《除数是一位数的除法》
  一、总体印象
  除数是一位数的除法是在学生学习了表内除法和乘数是一位数的乘法之后来安排的,掌握了其计算方法又为今后(第七册)学习除数是两位数的除法做好准备。这个单元在整个教材体系中处于承上启下的作用。本单元的教学要完成:
  1.会口算一位数除商是整十、整百、整千的数,一位数除几百几十(或几千几百)。
  2.使学生经历一位数除多位数的笔算过程,掌握一般的笔算方法,会用乘法验算除法。
  3.使学生能在具体的情境中估算,会表达估算的思路,形成估算的习惯。
  4.感受数学与生活的联系,能够运用所学知识解决日常生活中的简单问题。
  在这个单元的教学中,我们做了以下几点尝试:
  二、教学思考:
  >教学中的几点尝试:
  1、关于《除数是一位数的笔算除法》。
  相信在座的许多资深教师对这节课都相当熟悉。对于其中的重难点也都把握的比我好,今天我想说的是,学生在学习这个内容时的反映。这节课可以说是学生第一次接触到阶梯式竖式。也就是说拿除数去除被除数时需要除两次或两次以上。但有很多同学受原有竖式结构影响会出现一步到位的现象。碰到这种现象之后,我们试图引导学生发现阶梯式竖式的优越性,可在学生看来就是一步到位来的简单。于是我们又改变了数据让他们在除时除到被除数十位上有余数,想通过增加难度让学生能够知难而退。他们先通过口算先求出得数,照样能列出一步到位的竖式,在他们眼里一步到位的竖式最好。这使我们的教学陷入的困境......学生的误区在哪呢?是什么成了学习阶梯式竖式的障碍呢,于是我们小组通过讨论、尝试。最后我们发现改变数据解决不了问题的根本。关键在于笔算时如何引导学生将口算的过程与笔算相结合,如何在笔算的过程中体现口算的过程。同时在演示的过程中结合小棒的操作帮助学生理解笔算除法的算理。这样,学生就能够清楚地理解笔算的每一步过程,建立起口算与笔算的联系。也真正让学生明白和理解了阶梯式竖式的每一步的含义。
  2、关于“0除以任何不是0的数都得0”
  在关于0的计算中,学生前面已经有了0与加、减、乘的计算基础,但在这些计算中对数字都没有什么限制。也就是说任何数都可以。可是在除法算式中,除数排除了0,这对于学生来说是陌生的,他们并不知道为什么。在以前教学中,当学生问起时,我们也只是对学生说0作除数没有意义,我想对于这样的解释现在的学生是不会满足的。如果我们要跟他们说明为什么除数不能是0的道理,学生又不一定听的懂。我们是这样解决的:
  案例:《0除以任何不是0的数都得0》
  一、复习0的运算。
  板:0×a=0,0+a=a,a-0=a。
  二、学习0÷a。
  师:根据前面的经验,你来猜一猜:0÷a=?(大多数学生都说等于0。)
  师:那你能用自己的经验去解释你们的答案是正确的吗?思索了一会儿后。
  生:当a=1时,0÷1=0,我是通过验算得来的,因为0×1=0,所以我认为0÷a=0。
  师:那0÷5呢?(也是0)那当a=6、7、8、......(a=任何数,得数都是0)一个学生迫不及待的喊到。
  生2:老师,我发现的不是这样的,根据0乘任何数都得0,那么0÷0应该是任何数。
  师:那到底等于多少呢?
  生1:1-n都可以。(学生想到无穷大,用n表示)
  生2(一个刚插班的学生):老师,我知道0除以任何不是0的数都得0,除数是0是不行的,因为一个数除以0没有意义,(师:你是怎么知道的?)以前的老师说的,(师:为什么没意义呢?)不知道。
  生3:那0÷0到底等于几呢?大家的得数都可以,你想等于几就是几,得数没办法确定,这样的题目还有什么意思呢?
  生4:对,如果有这样的题目,老师也没法改了,所以这样的题目是没意义的。
  生2:我现在明白了,原来除以0没有意义是因为它的得数没法确定。因为它没东西来分,却能得到五花八门的答案这是不可能的。
  生5:那如果有东西分呢?比如:5÷0会等于几呢?
  师:同学们说它的得数会是几呢?
  生1:我觉得它等于0。
  生2:我反对,明明有5个东西,除以0也就是没分掉怎么会等于0呢?应该是等于5才是啊。
  生3:我觉得这两个得数都是错的,因为0×0等于0而不等于5,而5×0也是0。也不等于5。所以这两个答案都是错的。
  生4:这么说它也是没答案的,等于任何数都不行,因为任何数乘0都得0,不会等于5。因此5÷0的得数也不能确定,所以我觉得这样的算式也是没有意义的。
  生5:看来,不管有没东西拿来分,除数是0都是不行的,因为这样的得数没办法确定。那这样的算式也就显得没有意义。
  生6:我现在明白了要使0÷a等于0得有个条件,那就是a不等于0。
  学生在一种辩论、探讨、明晰的过程中真正理解了0除以任何不是0的数都得0的内涵。而不是像开始的那位学生那样从老师那里知道了这句话,却不知道除数为什么不是0,只是在只其然的程度上徘徊。
  3、例6,被除数中间(末尾)有0商中间(末尾)也有0,如果教好了这一种情况就结课,在今后的学习中学生就会形成定式:被除数中间(末尾)有0那得到的商中间(末尾)也有0。于是被除数中间(末尾)有0而得到的商中间(末尾)却没有0的这种情况,我们觉得有必要向学生渗透。我们在学好这节课后可以让学生说说你学了今天的知识有什么发现?
  生:我发现被除数中间(末尾)有0商中间(末尾)也有0。
  这时候教师就要利用好这个难受得的资源:
  师:是这样吗?谁能举个例子来说明一下。
  705÷5、900÷6、260÷4
  接着再让学生研究:商中间(末尾)的0是怎么产生呢?
  最后让学生明白:0的产生是因为给除数去除的被除数比除数小,用除数去除时不够商1,而商0。这样做不仅避免了学生在今后的计算中产生思维定式,而且让学生明白了产生0的原因,同时还能下节课的学习做好准备。
  >教学中的几点温馨提醒:
  P18练习九第6题
  已知东北虎的重量,要求鸵鸟和企鹅的重量。这是一道“已知一个数的几倍是多少,求这个数”的问题。关于这种类型的问题,学生才第一次接触,教师在教学时应充分发挥自身的主导作用,进行一定的启发、引导。
  如通过让学生画一画线段图来理解。在理解的基础上我们将求一个数是另一个数的几倍,求一个数的几倍是多少?和已知一个数的几倍是多少,求这个数。这三类问题进行比较练习。
  P26练习六第3题
  此题渗透能被2、3、5整除的数的特征和集合的思想。题目中,被2除、被3除这样的表述方法是第一次出现,教师应做必要的指导。指出4/2(4除以2,也可以说4被2除)。同时要指出每次判断时,每个数都分别要除以2、3、5,防止漏填。
  P37练习九第5题
  虽然在二年级下册的解决问题中已经出现了小括号和两步计算的式题。但二年级时数据相对简单,容易口算。而这些题目如果要口算有一定的难度,直接写出结果容易出错,我认为教师在强调运算的顺序的前提下,要指导学生用递等式,写出每步计算的过程,注重递等式的书写格式。
页: [1]
查看完整版本: 三年级数学教案——《以人为本构建和谐的数学课堂》教案