五年级数学教案——《梯形面积的计算》
教学目标:(1)理解梯形面积公式的推导过程,会应用公式正确计算梯形的面积。
(2)培养学生合作学习的能力。
(3)继续渗透旋转、平移的数学思想。
教学重点:理解并掌握梯形面积公式的计算方法。
教学难点:理解梯形面积公式的推导过程。
教学过程:
一、复习旧知
1.求出下面图形的面积。
2.回忆三角形面积公式推导过程(演示课件:拼摆三角形下载)
二、设疑引入
教师出示一个梯形和一个三角形(已标出底和高)。这个梯形比三角形的面积大还是小?相差多少呢?要想得到准确地结果该怎么办?
板书课题:梯形面积的计算
三、指导探索
第一部分:梯形面积公式的推导。
1.小组合作推导公式。
教师谈话:利用手里的学具,仿照求三角形面积的方法推导梯形面积的计算公式
提纲:
2.(演示课件:拼摆梯形下载)
电脑演示转化推导的全过程。
3.由学生自己说明“梯形面积=(上底+下底)×高÷2”的道理。
4.概括总结、归纳公式。
提问:(1)(上底+下底)×高求的是什么?
(2)为什么要除以2?
板书:梯形面积=(上底+下底)×高÷2
第二部分,应用公式计算。
1.出示例1、一条新挖的渠道,横截面是梯形,渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面的面积是多少平方米?
2.提问:已知什么?求什么?怎样解答?
3、列式解答
(2.8+1.4)×1.2÷2
=4.2×1.2÷2
=2.52(平方米)
答:它的横截面的面积是2.52平方米。
四、巩固练习
1、计算下面梯形的面积。
2.动手测量学具(梯形)的相关数据,并计算梯形学具的面积。
3.下面是一座水电站拦河坝的横截面图,求它的面积。
五、质疑总结。
1.师生共同回忆这节课所学习的内容。
提问:求梯形的面积为什么要除以2?
求梯形面积需知哪些条件?
2.引导学生质疑,组织学生解题。
六、板书设计
典型例题
1、下图中梯形的面积是360平方厘米。
图形甲比乙少多少平方厘米?
分析:
思路一:已知梯形的面积是360平方厘米,又知梯形的上底和下底,可以求出梯形的高,也是三角形的高,再通过三角形的底和高分别计算甲、乙的面积,进而求出甲比乙的面积少多少平方厘米。
解:360×2÷(10+30)=18(厘米)
10×18÷2=90(平方厘米)
30×18÷2=270(平方厘米)
270-90=180(平方厘米)
思路二:根据梯形的性质,上底和下底平行,所以甲和乙这两个三角形的高相等。由已知条件乙三角形的底是甲三角形底的3倍(30÷10),所以乙的面积是甲的3倍,即乙的面积比甲多2倍。梯形面积一共是360平方米,一共分成4份,一份是90平方米,所以甲比乙少90×2=180平方米。
解:30÷10=3
360÷(3+1)×(3-1)
=90×2
=180(平方米)
答:甲的面积比乙少180平方厘米。
2、下图中直角梯形的面积是多少平方厘米?
分析:要求梯形的面积,先要求出梯形的高,我们可以根据45°这个角再连出一个梯形的高,如下图
连出的三角形为等腰直角三角形,这就得出梯形的高就是2厘米,解决了关键问题。
解:(4+6)×2÷2=10(平方厘米)。
3、已知和是两个完全一样的直角三角形,,,,求梯形的面积。
分析:因为和面积相等,从中同时减去,剩下的面积也一定相等,即:梯形与梯形的面积相等,也就是说,要求梯形的面积,只要求出梯形的面积就可以了。
解:在梯形中,,,
(8+12)×3÷2=30
答:梯形的面积是30。
4、一个梯形,它的高与上底的乘积是15平方厘米,高与下底的乘积是21平方厘米,这个梯形的面积是多少平方厘米?
分析:根据题意可知:高×上底=15,高×下底=21,所以高×上底+高×下底=(上底+下底)×高(乘法分配率)
又因为(上底+下底)×高=梯形面积×2
即15+21=36是梯形面积的2倍
解:(15+21)÷2=18(平方厘米)
答:梯形面积是18平方厘米。
5、一个直角梯形,若下底增加1.5米,则面积就增加3.15平方米,上底增加1.2米,就得到一个正方形。这个直角梯形的面积是多少平方米?
分析:若下底增加1.5米,则面积增加一个底为1.5米的三角形,已知三角形的面积是3.15平方米,底是1.5米,就可以求出该三角形的高,也就是梯形的高,3.15×2÷1.5=4.2(米)又知上底延长1.2米能得到一个正方形,说明梯形的下底和高相等,并且下底比上底多1.2米,这样可以求出梯形的上底,4.2-1.2=3(米),已知梯形上底3米,下底和高都是4.2米,可以求出直角梯形的面积。
解:(3+4.2)×4.2÷2=15.12(平方米)
答:这个直角梯形的面积是15.12平方米。
页:
[1]