小学教育网 发表于 2016-8-15 22:14:45

六年级奥数试题及答案:环形跑道问题

一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行.那么,它们相遇时已爬行的时间是多少秒?
       

       
       
       
        点击下一页查看答案


jzthree 发表于 2016-8-15 23:33:21


          考点:环形跑道问题.
       
          分析:道题难在蚂蚁爬行的方向不断地发生变化,那么如果这两只蚂蚁都不调头爬行,相遇时它们已经爬行了多长时间呢?非常简单,由于半圆周长为:1.26÷2=0.63米=63厘米,所以可列式为:1.26÷2÷(5.5+3.5)=7(秒);我们发现蚂蚁爬行方向的变化是有规律可循的,它们每爬行1秒、3秒、5秒、…(连续的奇数)就调头爬行.每只蚂蚁先向前爬1秒,然后调头爬3秒,再调头爬5秒,这时相当于在向前爬1秒的基础上又向前爬行了2秒;同理,接着向后爬7秒,再向前爬9秒,再向后爬11秒,再向前爬13秒,这就相当于一共向前爬行了1+2+2+2=7(秒),正好相遇.
       
          解答解:它们相遇时应是行了半个圆周,半个圆周长为:
       
          1.26÷2=0.63(米)=63(厘米);
       
          如不调头,它们相遇时间为:
       
          63÷(3.5+5.5)=7(秒);
       
          根据它们调头再返回的规律可知:
       
          由于1-3+5-7+9-11+13=7(秒),
       
          所以13+11+9+7+5+3+1=49(秒)相遇.
       
          答:它们相遇时已爬行的时间是49秒.
       
          点评:完成本题关健是发现蚂蚁爬行方向的变化是有规律可循.
       
页: [1]
查看完整版本: 六年级奥数试题及答案:环形跑道问题