小学教育网 发表于 2016-8-15 10:37:48

四年级奥数题及答案:数论(高等难度)

  数论:(高等难度)
       
          一个七位数

,能同时被1,2,3,4,5,6,7,8,9整除,则

       
        更多试题:
       
       
       
       
       

jzthree 发表于 2016-8-15 11:16:09


          数论答案:
       
          能被8整除的数肯定能被2与4整除,能被9整除的数肯定能被3整除,能同时被8与9整除的数肯定能被6整除,而能被5整除的数末位数肯定是0或5,因为它要能被8(偶数)整除,所以末位数肯定是0。也即z=0 。所以题目就转变为

: 能同时被7,8,9整除,求x+y 的值。因为7,8,9两两互质,所以能被7,8,9整除肯定能被 整除,一个7位数被504整除,且最后一位数是0,所以可知商的末位数肯定是5。而因为这个七位数开始的四个数是2058,所以可知商的首位是4由此可以很容易推出商是4085。所以X=8,Y=4,Z=0,即X+Y+Z=12。
       
          【小结】数论整除这部分应当牢记特殊数整除的特点
页: [1]
查看完整版本: 四年级奥数题及答案:数论(高等难度)