小学教育网 发表于 2016-8-14 21:59:27

小学三年级奥数题及答案解析:还原问题

  小学三年级奥数题及答案解析:还原问题
          1.还原问题
       
          牛老师带着37名同学到野外春游.休息时,小强问:"牛老师您今年多少岁啦?"牛老师有趣地回答:"我的年龄乘以2,减去16后,再除以2,加上8,结果恰好是我们今天参加活动的总人数."小朋友们,你知道牛老师今年多少岁吗?
       
       
          【分析】采用倒推法,我们可以从最后的结果"参加活动的总人数"即38倒着往前推.这个数没加上8时应是多少?没除以2时应是多少? 没减去16时应是多少?没乘以2时应是多少?这样依次逆推,就可以求出牛老师今年的岁数.没加上8时应是:38-8=30 ;没除以2时应是:30×2=60 ;没减去16时应是:60+16=76 ;没乘以2时应是:76÷2=38 ,即[(38-8)×2+16]÷2=38 (岁).
       
          2.还原问题
       
          右图中的每个数字分别表示所对应的线段的长度(单位:米)。这个图形的面积等于多少平方米?
       
       

       
       
          解答:5×2+(5+3)×3+(5+3+4)×2=58(米2);
       
          或5×(2+3+2)+3×(2+3)+4×2=58(米2)。
       
          【小结】将此图形分割成长方形有下面两种较简单的方法,图形都被分割成三个长方形。根据这两种不同的分割方法,都可以计算出图形的的面积。
       
       

       
       
          5×2+(5+3)×3+(5+3+4)×2=58(米2);
       
          或5×(2+3+2)+3×(2+3)+4×2=58(米2)。
       
          上面的方法是通过将图形分割成若干个长方形,然后求图形面积的。实际上,我们也可以将图形"添补"成一个大长方形(见下图),然后利用大长方形与两个小长方形的面积之差,求出图形的面积。
       

          (5+3+4)×(2+3+2)-2×3-(2+3)×4=58(米2);
       
          或 (5+3+4)×(2+3+2)-2×(3+4)-3×4=58(米2)。
       
          计算直角多边形面积,主要是利用"分割"和"添补"的方法,将图形演变为多个长方形的和或差,然后计算出图形的面积。其中"分割"是最基本、最常用的方法。
       
       
        奥数网奥数讲义网页版:
       
       
       
        更多试题查看奥数网题库:
页: [1]
查看完整版本: 小学三年级奥数题及答案解析:还原问题