五年级奥数天天练及答案4.14(抽屉原理)
奥数天天练栏目每日精选中等、高等难度试题各一道。中难度试题适合一些有过思维基础训练、考题学习经历,并且奥数成绩中上的学生。高难度试题立足于杯赛真题、综合应用和加深各知识点,适合一些志在竞赛 中夺取佳绩的学生。本周试题由学而思奥数名师精选、解析,以保证试题质量。
每周末,我们将一周试题汇总为word版本试卷,您可下载打印或在线阅读。
难度:★★★★
小学五年级奥数天天练:抽屉原理
平面上有A、B、C、D、E、F六个点,其中没有三点共线,每两点之间任意选用红线或蓝线连接,求证:不管怎样连接,至少存在一个三边同色的三角形。
点击下一页查看答案
【答案】
连彩线的方式很多,如果一 一画图验证结论,显然是不可取的.这个问题如果利用抽屉原理去解决,就不是难事了。
我们用虚线表示红色,用实线表示蓝色.从任意一点比如点A出发,要向B.C、D、E、F连5条线段.因为只有两种颜色,所以根据抽屉原理,至少有3条线段同色.不妨设AB、AD、AE三线同红色(如右图).如果B、D、E这三点之间所连的三条线段中有一条是红色的,则出现一个三边为红色的三角形.如果这三点之间所连线段都不是红色,那么就都是蓝色的.这样,三角形BDE就是一个蓝色的三角形.因此,不管如何连彩线,总可以找到一个三边同色的三角形。
页:
[1]