小学教育网 发表于 2016-8-13 13:17:36

生活趣味数学题:换卡片


          
          [*]
       
12
                               
          按照规定,两张带有记号△的卡片可以换一张有□的卡片,两张有□的卡片换一张有☆的卡片,两张有☆的卡片换一张有~的卡片,两张有~的卡片换一张有◎的卡片。
          一个人有6张卡片,上面的记号分别是
          △ △ □ ☆ ☆ ~
          他去交换卡片,希望卡片的张数越少越好。换卡后,他身边还有几张卡片?上面是些什么图形?
          借用数学符号,可以将换卡过程表示如下。
          (△+△)+□+(☆+☆)+~=□+□+~+~=☆+◎。
          由此可见,换卡后还剩两张卡片,上面的图形分别是☆和◎。
          这题目很简单,一会儿就把卡片换好了。但是这题目又不简单,因为它后面有背景。
          实际上,这个“两张换一张”的卡片问题,是以二进位制为背景的。
          要使总的卡片张数最少,每种卡片留下的张数只能是0或1,相当于在二进位制里只用两个数字0和1.
          每两张同一种的卡片换一张高一级的卡片,相当于二进位制里同一位上的两个单位合并起来向上面一位进1,“逢二进一”。
          本题中每一张带有符号的卡片,相当于一个二进位制的数,对应关系如下:
          △=1,
          □=10,
          ☆=100,
          ~=1000,
          ◎=10000.
          原来的卡片,有两张△,一张□,两张☆和一张~,可以用二进位制求它们的总和,得到
          (1+1)+10+(100+100)+1000=10+10+1000+1000
          =100+10000
          =10100.
          最后,将卡片记号排名榜和二进位制答数对照:
          ◎ ~ ☆ □ △
          1 0 1 0 0
          在◎和☆的位置上是数字1,其他位置上都是0.由此可见,换卡片的结果,最后保留1张◎卡和1张☆卡。
          在生活中,很多场合都只有两种状态换来换去,例如灯泡的亮和熄,风扇叶的转和停,门铃的叮咚和寂静,都是由一个开关控制,有电送过去就工作,没有电送过去就休息。
          在数学上,可以用二进位制的数字1和0分别表示有和无,二进位制数的每一位相当于一个转换有无的开关。所以二进位制可以在很多地方施展身手。特别是电子计算机,在那里面,二进位制可算是大显神通了。
页: [1]
查看完整版本: 生活趣味数学题:换卡片