小学教育网 发表于 2016-8-13 13:02:46

小学数学知识问答300例—两步的应用题和多步应用题


          
          [*]
       
12
                                  134.常说“学会解答两步的应用题是解答多步应用题的关键”,这是怎么一回事呢?
  两步应用题,它的结构是给出一个直接条件,一个间接条件,还有一个与条件有关的问题。因为其中有一个间接条件,因此,分析时比解答一步应用题要难得多。同一步应用题相比,不仅仅是在解答层次上多了一步,事实上,它同一步应用题隔着一级高高的台阶,要跨大步才能迈得上去。
  学习解答两步应用题是解答复合应用题的开始,是由一步应用题过渡到三步、四步等较复杂的应用题的桥梁,是非常关键的一个阶段。正如老师们所说的:一步应用题是基础,两步应用题是关键。
  教学两步应用题,应注意以下两点:
  (1)使学生认识两步应用题的结构
  由一步应用题向两步应用题过渡时应使学生弄清楚什么是“间接条件”,间接条件与直接条件的关系,间接条件与问题之间的关系,从而理解两步应用题的结构。
  例如,一步应用题是:大牛20头,小牛5头,大牛、小牛共有多少头?
  根据这个题目,教师可以进行启发引导:这道题的两个条件,如果“小牛5头”这个条件不直接给出来,而根据“大牛20头”的关系给出来,应该怎样改编一下这道题呢?
  学生的思想很活跃,举手争先发言。
  学生甲:大牛20头,小牛比大牛少15头,大牛、小牛共有多少头?
  20+(20-15)=25(头)
  学生乙:大牛20头,大牛比小牛多15头,大牛、小牛共有多少头?
  20+(20-15)=25(头)
  学生丙:大牛20头,大牛的头数是小牛的4倍,大牛、小牛共有多少头?
  20+20÷4=25(头)
  学生丁:大牛20头,小牛的头数是大牛的四分之一,大牛、小牛共有多少头?
  20+20÷4=25(头)
  学生改编的条件都正确。这是在原来的一步应用题的基础上不受任何限制地改编其中的一个条件。不难看出,学生对于两步应用题的结构有了初步的认识。
  间接条件(也叫隐蔽的条件),是构成两步应用题的重要因素,学会找出间接条件是解答两步应用题的重要一环。
  (2)根据问题找条件,锻炼学生分析问题的能力。
  一般情况下,凡遇到“求剩下多少”的时候,必然要找出“原有多少”和“用去多少”,也就是要找出被减数和减数。凡遇到“求平均每小组多少人”的时候,必然要找出“共有多少人”和“分为几个小组”,也就是要找出被除数和除数。这种训练,实际上是培养学生用分析法解答应用题的思路训练。
  上课时,可以提出一些问题,让学生答出需要的条件。例如:(1)应该找回多少钱?(需要答出:总价是多少,一共给了多少钱?这是一个减法题)
  (2)两条水渠共长多少米?(需要答出:第一条水渠长多少米?第二条水渠长多少米?这是一个加法题)
  (3)实际上比原计划提前几天完成?(需要答出:原计划多少天完成?实际上用了多少天?这是一个减法题)
  (4)平均每个班能借多少本书?(需要答出:共有书多少本?共有几个班?这是一个除法题)
  这样的训练很重要。可以使学生认识到:特定的问题,必定具备与之相应的条件。提出的条件,可以是直接的,当然也可以是间接的。
  如果看到所求的问题就能联想到相应的条件,这样训练的目的是为了提高学生分析数量关系的能力。也可以说是培养学生解题能力的一环。
页: [1]
查看完整版本: 小学数学知识问答300例—两步的应用题和多步应用题