1997年全国初中数学联赛(第二试)题目
12一.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:,且BC=BD.
二.已知a,b为整数,且a>b,方程3x2 + 3(a+b)x + 4ab = 0的两个根α,β满足关系式α(α+1) + β(β+1) = (α+1)(β+1).
试求所有的整数点对(a,b).
三.已知定理:“若三个大于3的质数,a,b,c满足关系式2a+5b=c,则a+b+c是整数n的倍数”.试问:上述定理中的整数n的最大可能值是多少?并证明你的结论.
页:
[1]